Appendix A:

Transportation Conditions Analysis Memorandum

R^3C DESIGN GROUP

To: Ms. Lara Justesen
From: Shashi Gannavaram, P.E, PTP, AICP, PTOE
CC:
Date: 9/24/2013

Re: \quad Transportation conditions analysis for the Englewood Arts District

1 Introduction

R^3C Design Group, LLC was requested to assist in transportation planning and traffic engineering elements for developing a Circulation Plan for the Englewood Arts District in Independence, Missouri. The Englewood Arts District is on E. Winner Road between Northern Boulevard and Sterling Road.

In particular the existing roadway system in the district is evaluated, including crash rates, the unique median parking and sight-distance challenges. Because the intersection of E . Winner Road and Northern Boulevard, on the west edge of the district, is a complicated five-legged intersection, much of this document describes the inherent challenges of this area and offers positive alternatives for improving the intersection. Finally, priorities are presented for improving the overall traffic flow through the district both auto and non-motorized.

The arts district is predominantly commercial, including only a few residences on the western end of the project, near Northern

Exhibit 1: Looking west along E. Winner Road Boulevard. The commercial district is comprised mostly of small, personally-owned and operated businesses, providing a wide range of services. The corridor's key attraction is the now-closed Englewood Theater, which has no immediate plan to reopen.

The sidewalks and northern curb line between Sterling Road and Appleton Avenue have been recently improved by the City of Independence. This project also included new crosswalks and
pedestrian signs at key intersections. There are no immediate Capital Improvement Projects planned on E. Winner Road.

2 Roadway system

2.1 Crash analysis

Crash data from 2010 to July 2013 was obtained from the City of Independence and analyzed to detect any unsafe conditions. The crash data was on E. Winner Road between Northern Avenue and Sterling Avenue. The data is summarized in Exhibit 3 below.

The following observations were noted:

- 36-percent (4 of 11) of the crashes resulted in injuries.
- There were no pedestrian vehicle crashes in the corridor.
- Failing to yield resulted in 45% (5 of 11) crashes.
- In the last three years, the Northern Avenue intersection has seen no crashes. The closest crash occurred 50 feet east of Northern Avenue as a car was merging into traffic.
- The Appleton Avenue intersection experienced 45\% (5 of 11) crashes in the corridor.
o Police reports indicated that two of the crashes resulted from obscured vision due to a parked car on the west side of the intersection.

Further review of the Appleton Avenue intersection reveals the following:

Exhibit 2: Sight distance challenges due to parked vehicles at Appleton Avenue

- Sight distance restrictions - Sight distance restrictions are primarily due

R^3C DESIGN GROUP
to the angled parking along on-street medians. Since sight triangles are not strictly observed at this location, cars in the median are not able to view traffic on E. Winner Road during the turn. An example of these restrictions is shown in Exhibit 2.

Year	Location	Severity	```Number of vehicles```	Type	Cause	Notes	Harvard St.
O-寸	50 feet east of Northern	PDO	2	Sideswipe	Failure to yield		
	Winner Road - midblock	INJ	2	Head on	Too fast		
	Appleton at Winner	PDO	2	Right angle	Failure to yield	Vision obscured by parked car on west side	
	Appleton at Winner	INJ	2	Right angle	Failure to yield	Vision obscured by parked car on west side	S. Harris Ave.
	45 feet east of Harris	PDO	2	Parked car	Improper backing	Bad pull out from parking stall	
$\underset{\sim}{\text { Hi}}$	Appleton at Winner	PDO	2	Angle	Improper signal + inattention		
	Appleton at Winner	PDO	2	Sideswipe	Improper passing		
$\underset{\sim}{\sim}$	Harvard at Winner	INJ	2	Angle	Failure to yield		S. Appleton Ave.
	Winner Road at alley near Englewood Café	PDO	1	Drive into construction zone	Inattention		
	Appleton at Winner	INJ	2	Angle	Failure to yield		
$\underset{\sim}{n}$	50 feet west of Harvard	PDO	2	Parked car	Poor lane use		
Notes: 1. PDO = Property damage only reported 2. INJ = Injury crash 3. Crash reports between January 1, 2010 and July 22, 2013 summarized							S. Northern Blvd.
							Crash location and number

Exhibit 3: Crash analysis on E. Winner Road

2.2 On-street median parking

A very unique feature of the Englewood Arts District, specifically E. Winner Road, is the onstreet angled median parking. Business owners on E. Winner Road consider this long-standing feature sacred and strongly oppose any change to this parking pattern. However, significant challenges are posed by the on-street median parking.

R^3C DESIGN GROUP

- Adjoining lane width:

The 60-degree angled parking results in a very wide lane width for vehicular traffic. In some locations, each lane on E . Winner Road is about 22 feet wide. Even
 though this section of the roadway is posted at 20 miles per hour (mph), the excessive pavement increases the comfort of the driver, and higher speeds tend to prevail.

- Sight distance: The median parking restricts the sight triangle particularly for vehicles turning onto the side streets. This is one of the primary factors for the higher crash rate at the Appleton Avenue intersection. The crash rates are discussed in a prior section.
- Crossing E. Winner Road: Business patrons park in the median and conveniently cross the street in front of their car at mid-block locations. Oncoming drivers must be unduly cautious of pedestrians stepping out from behind a parked car in the median.

Because of the wide lane width, a suggestion was presented to the steering committee to reduce the angle of the parking from the current 60 degrees to 45 degrees. This angle reduction also reduces the required lane width to 12 feet, with a stall width of 8 feet, a depth of 18.5 feet and skew width of 11.3 feet. However, it should be noted that the current city standard for parking stall width is 9 feet.

By reducing the parking angle and lane widths pedestrian safety is improved because of the shorter walking distance and exposure time in mid-block locations. Significantly, the spatial restrictions perceived by drivers will assist in slowing the vehicular traffic.

While this solution does not address the concerns listed above, it does maintain the desired onstreet parking while providing some safety enhancements.

2.3 Sight distance

A significant cause for concern and safety is the sight distance challenges posed by large vehicles parking in the median near side street intersections. The plane of the sight triangle is encroached upon, causing vision challenges for traffic crossing E. Winner Road. This vision challenge must be recognized by those implementing future roadway improvements, and appropriate guidelines must be followed. These are provided in the "A Policy on Geometric Design of Highways and Street," published by the American Association of State Highway and

Transportation Officials (AASHTO), 2004 (commonly referred to as the green book). The criteria are as follows:

- Left turn from stop (Exhibit 9-55 of the green book) -
o 280 -feet for 25 mph
o 225 feet for 20 mph
- Crossing maneuver (Exhibit 9-58 of the green book) -
o 240 -feet for 25 mph
o 195 feet for 20 mph
During concept plan development, the guidelines were used to determine the triangle at each crossing point. Because business owners were unwilling to give up three or four parking spots at each crossing, an alternative plan was developed to minimize the sight triangle encroachment. This plan utilized green space and parking spaces specifically designated to compact cars and bicycles. . Exhibit 5 shows the final concept developed for the Appleton Avenue intersection.

Exhibit 5: Parking concept at Appleton Avenue intersection

3 E. Winner Road at Northern Avenue Intersection

E. Winner Road at Northern Avenue, located on the west edge of the study area, is a nonstandard five-legged intersection. An in-depth analysis is being completed for this intersection to determine possible improvements and create a gateway entrance to the arts district.

3.1 Existing traffic counts

Traffic counts were collected in July 2013 during the morning and afternoon peak hours. Pedestrian activity was also recorded during the same time periods. These counts are shown in Exhibit 6 below.

Exhibit 6: Existing traffic counts at E. Winner Road and Northern Boulevard intersection

Exhibit 7: No pedestrian actuation at E. Winner Road and Northern Boulevard

From these traffic counts we observe the following:

- Pedestrian activity is minimal during both peak auto-traffic periods. While the intersection is a non-standard five-legged intersection, it is believed to be relatively simple to access and cross. Although the existing signal has pedestrian indications, no push-buttons are provided for pedestrian actuation.

R^3C DESIGN GROUP

- Traffic flow is not directional - the volume of traffic east or westbound on E. Winner Road is of the same magnitude during both peak periods.
- Minimal traffic is turning onto E. $18^{\text {th }}$ Street. Most of the E. $18^{\text {th }}$ Street traffic continues as through traffic from the east leg of E. Winner Road.
- During field observations, it was noted that the majority of the traffic to $\mathrm{E} .18^{\text {th }}$ Street is turning one block west at S. Ralston Avenue.

3.2 Capacity analysis

When evaluating modifications to an intersection its operational level must be established. Based upon the delays experienced by its users, a baseline is set and improvement ideas are analyzed. Any alternatives developed should exceed this baseline level of operations. The "Highway Capacity Manual", published by the Transportation Research Board (TRB), 2010 provides guidelines for completing an operational analysis at the intersection. The analysis
results in a letter grade called the Level of Service (LOS). LOS ranges from A through F where LOS A implies drivers experience no delays while LOS F indicates a complete breakdown at the intersection. For signalized intersections, the criteria for the LOS grade are shown in the adjacent table.

Level of Service (LOS)	Delay (seconds per vehicle)	General description
A	≤ 10	Free flow
B	>10 to 20	Stable flow
C	>20 to 35	Stable flow
D	>35 to 55	Tolerable delay
E	>55 to 80	Intolerable delay
F	>80	Jammed conditions

Exhibit 8: Signal intersection level of service criteria

Because this intersection is five-
legged, it should be noted that the HCM 2010 methodology does not analyze it. HCM 2000 methodologies were used to complete the analysis. The criteria used for determining the LOS is the same using both methodologies. However, minor modifications do exist in how the delay is calculated.

The analysis is completed using software called Synchro, released by Trafficware, version 8. The results of the analysis are shown in Exhibit 9. Outputs from the software are included in the appendix. The following conclusions are made from the analysis results.
re
R^3C DESIGN GROUP

	Peak hour/ item		Approach					Intersection
			$18^{\text {th }} \mathrm{St} .$ Eastbound	Winner Rd. Westbound	Northern Northbound	Northern Southbound	Winner Eastbound	
		$\begin{aligned} & \stackrel{*}{\star} \\ & \stackrel{\pi}{0} \\ & \stackrel{\rightharpoonup}{0} \end{aligned}$	15.6	11.8	4.4	4.4	16.8	12.1
	$\stackrel{\bar{\Sigma}}{\bar{D}}$	0	B	B	A	A	B	B
		$\begin{aligned} & \stackrel{*}{2} \\ & \frac{\pi}{0} \\ & \hline 0 \end{aligned}$	11.9	9.4	6.9	7.1	15.4	11.4
	$\begin{gathered} \frac{5}{ँ} \\ \frac{4}{4} \end{gathered}$	亿	B	A	A	A	B	B

* - delay is measured in seconds per vehicle

Exhibit 9: Existing capacity analysis summary

From Exhibit 9 it is observed that the intersection can meet its present traffic demand. The levels-of-service are indicative of minimal delays. Further, it is believed that sufficient spare capacity is available to accommodate future growth.

3.3 Alternative development

This phase was primarily completed during the charrette on August 5 and 6,2013. The steering committee and the Transportation Focus Group were presented with the existing conditions. During the discussions, it was noted that the E. $18^{\text {th }}$ Street leg of the intersection was primarily funneling traffic to and from E. Winner Road. Good connectivity within the network allows traffic to turn onto E. $18^{\text {th }}$ Street from S. Ralston Avenue to the west and E. $19^{\text {th }}$ Street to the south.

Simplifying the intersection was a primary desire of the steering committee and a suggestion was made to close E. $18^{\text {th }}$ Street at S. Hedges Avenue. This would force S. Hedges Avenue traffic to use E. $18^{\text {th }}$ Street to the west, using S. Ralston Avenue to connect to E. Winner Road.

The advantages of this approach are:

1. The five legged intersection of S. Northern Boulevard and E. Winner Road becomes a standard four legged intersection.
2. Traffic coming to and from S. Hedges Avenue has a standard four-way intersection at S . Ralston Avenue.

However, a disadvantage is that S. Hedges Avenue traffic must travel an extra distance to get to E. Winner Road. Traffic heading east on E. Winner Road will be the most inconvenienced with this approach.

The overall approach of closing E. $18^{\text {th }}$ Street between S. Hedges Avenue and E. Winner Road was very well received by the steering committee. This modified intersection is shown in Exhibit
10.

Because the intersection is now converted to a standard four-way intersection, options for traffic control are discussed. A desire of the focus group is to convert this intersection into a gateway to the Englewood Arts District. The two options that present themselves are:

1. Improve the signal layout at the intersection or
2. Install a single-lane roundabout at the intersection.

These are shown in Exhibit 11. Because of the overwhelming support for standardizing the intersection by closing the $\mathrm{E} .18^{\text {th }}$ Street leg, further analysis and alternative testing is being completed using each of these two alternatives.

Exhibit 11: Alternatives for the E. Winner Road and Northern Boulevard intersection
Advantages and disadvantages for each method of traffic control were briefly presented during the charrette. A few of these are summarized in Exhibit 12. Despite the disadvantages of a roundabout, the steering group and the charrette attendees unanimously prefer a roundabout for this intersection.

Signal intersection		Roundabout	
Advantages	Disadvantages	Advantages	Disadvantages
	32 points of conflict between vehicles and pedestrians	Safer - Reduced vehicle speed Reduction in conflict points	
Shorter walking distance for the pedestrian	Increased exposure for pedestrians	Reduced exposure for pedestrians	Increased walking distance for a pedestrian
	Increased congestion	Reduced congestion	
	Maintenance for life of signal	Reduced maintenance costs - primarily landscaping	
Users are used to signals - no learning required.	Increased fuel use and pollution	Reduced fuel use and pollution	

Exhibit 12: Advantages and disadvantages of intersection control

3.4 Alternative testing

Alternative testing uses current counts to determine operational performance levels. These are compared to the existing levels-of-service, from Exhibit 9, and a suitable approach for traffic control at the intersection is selected. The two tested alternatives are:

1. Standard four-way intersection with a signal
2. Standard four-way intersection with a single lane roundabout.

Results of this analysis are summarized in Exhibit 13. For both scenarios, the results indicate the intersection will operate at a high level of service. The intersection is projected to operate at LOS B with a signal control and LOS A with a roundabout.

To ensure that the intersection option will fulfill demand needs for the design life of 20 years, the two scenarios are tested by increasing existing traffic volumes at a two-percent (2\%) annual growth rate. This increases the traffic by about 50% over the 20 -years. These results are summarized in Exhibit 14. In 20 years the intersection is projected to continue operating at LOS B with signal control and LOS A with a roundabout in place.

Roundabout parameters used for analysis are as follows:

- Because the available diagonal pavement at the intersection is approximately 95 feet, the outside diameter of the roundabout was set at 90 -feet.
- The circulatory lane width is set at 15 feet.
- The inside circle diameter is 60 feet.
- All approach radii are set at a 50 feet radius.
- Lane width for approaching and exiting lanes is set at 12 feet, due to Kansas City Area Transportation Authority (KCATA) busses that use E. Winner Road.
- Pedestrian crosswalks are set 25 feet behind the yield line for each approach.
- Roundabout analysis was completed using the software SIDRA, released by Ackelick and Associates, version 6.

	Peak hour/ item		Approach				Intersection
			Winner Rd. Westbound	Northern Northbound	Northern Southbound	Winner Rd. Eastbound	
	$\begin{aligned} & \text { no } \\ & \text {. } \\ & \text { D } \\ & \hline \end{aligned}$	$\stackrel{*}{\text { ® }}$	13.4	4.2	4.3	15.2	12.3
		¢	B	A	A	B	B
		$\begin{aligned} & \stackrel{*}{\lambda} \\ & \stackrel{\text { a }}{0} \end{aligned}$	12.7	7.4	7.4	14.8	12.7
		O	B	A	A	B	B
	Peak hour/ item		Approach				
			Winner Rd. Westbound	Northern Northbound	Northern Southbound	Winner Rd. Eastbound	
		$\begin{aligned} & \stackrel{*}{\star} \\ & \stackrel{\text { a }}{0} \end{aligned}$	4.5	4.0	4.0	4.5	4.4
		§	A	A	A	A	A
		$\begin{aligned} & \stackrel{*}{2} \\ & \frac{\text { I }}{0} \end{aligned}$	5.7	5.4	4.8	6.9	6.1
		O	A	A	A	A	A

Exhibit 13: Proposed four-legged intersection capacity analysis summary

	Peak hour/ item		Approach				Intersection
			Winner Rd. Westbound	Northern Northbound	Northern Southbound	Winner Rd. Eastbound	
		$\stackrel{*}{*}$	13.0	5.1	5.2	15.3	12.4
		0	B	A	A	B	B
	$\begin{aligned} & \text { ㄷ } \\ & \text { O} \\ & \frac{c}{4} \\ & \frac{4}{4} \end{aligned}$	$\begin{aligned} & \stackrel{*}{7}_{\frac{\pi}{0}}^{2} \end{aligned}$	13.4	10.1	10.1	17.0	14.4
		0	B	B	B	B	B
	Peak hour/ item		Approach				Intersection
			Winner Rd. Westbound	Northern Northbound	Northern Southbound	Winner Rd. Eastbound	
		$\stackrel{*}{*}$	5.1	4.4	4.4	5.1	4.9
	$\begin{aligned} & \text { 등 } \\ & \Sigma \Sigma \end{aligned}$	0	A	A	A	A	A
	ᄃ	$\frac{\stackrel{\pi}{*}_{\frac{\pi}{0}}^{0}}{\stackrel{1}{2}}$	6.9	5.7	6.6	9.4	7.9
	$\begin{aligned} & \frac{5}{4} \\ & \frac{4}{4} \end{aligned}$	0	A	A	A	A	A

Exhibit 14: 20-year capacity analysis summary

4 Priorities

The existing transportation conditions analysis for the Englewood Arts District was completed by the R^3C Design Group, LLC. The focus was on the existing roadway conditions, crash rates, median parking and the sight distance restrictions caused by the on-street parking. However, the primary charge was to develop alternatives for the five-legged intersection at E . Winner Road and Northern Boulevard.

4.1 Roadway system

Field observations and the analysis indicate an excessive amount of pavement for accommodating one lane of traffic in each direction. At some locations the pavement was as wide as 22 feet, where a 12-feet lane width is adequate for traffic movement.

A cause of this wide pavement is the angled median parking. Because the entry angle is 60degrees, wider pavement width is required to negotiate the parking spot. By reducing this parking angle to 45-degrees, a narrower lane width is used by the through vehicles. An added benefit is the shorter distance and time that it takes for the pedestrians to cross E. Winner Road.

As part of this section, the crash rates and the predominant causes of crashes on E. Winner Road are examined. The high crash location is at Appleton Avenue and the main cause of the crashes is a lack of sight distance for traffic turning onto Appleton Avenue from E. Winner Road. When cars are parked in the median parking spots, the sight triangle is penetrated and turning vehicles are unable to see approaching traffic.

4.2 E. Winner Road and Northern Boulevard intersection

The data reveals that the traffic proceeds through this intersection because of the complicated nature of making a turn. The preferred turning location is S. Ralston Street, one block to the west. After considering the data and input from the steering committee and charrette participants, the E. $18^{\text {th }}$ Street connection between S. Hodges Road and E. Winner Road is eliminated.

This change improves the intersection to a standard four-way intersection, while causing only a minor inconvenience to the traffic on S. Hodges Avenue, as they are routed along S. Ralston Avenue to get to E . Winner Road.

Using the four-legged intersection as a basis, two alternatives for traffic control are evaluated and discussed in the charrette. A capacity analysis for both alternatives reveals that the intersection would operate with no delays regardless of the intersection control. However, charrette participants overwhelmingly approved the roundabout concept because of the inherent safety features.

5 Appendix

5.1 Existing

5.1.1 Morning peak hour

HCM Signalized Intersection Capacity Analysis

5.1.2 Afternoon peak hour

HCM Signalized Intersection Capacity Analysis 4:					8/23/2013
	4	\rightarrow		4	
Movement	SEL2	SEL	SER	SER2	
Lane Configurations		*		F	
Volume (uph)	2	228	19	0	
Ideal Fow (uphpl)	1900	1900	1900	1900	
Total Lost time (s)		4.0			
Lane Util. Factor		1.00			
Fit		0.99			
Ftt Protected		0.96			
Satd. Fow frot)		1760			
Ftt Pemitted		1.00			
Satd. How (perm)		1837			
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	
Adj. Flow (uph)	2	248	21	0	
RTOR Reduction (uph)	0	0	0	0	
Lane Group Flow (uph)	0	271	0	0	
Tum Type	Perm	NA		Pem	
Protected Phases		$4!$			
Permitted Phases	$4!$			4	
Actuated Green, G (s)		10.9			
Effective Green, g (s)		10.9			
Actuated g/C Ratio		0.28			
Clearance Time (s)		4.0			
Vehicle Extension (s)		3.0			
Lane Grp Cap (wht)		473			
wis Ratio Prot					
wis Ratio Perm		c0.15			
wic Ratio		0.57			
Unifom Delay, d1		13.7			
Progression Factor		1.00			
Incremental Delay, d2		1.7			
Delay (s)		15.4			
Level of Service		B			
Approach Delay (s)		15.4			
Approach LOS		B			
Intersection Summary					

$5.2 \quad 18^{\text {th }}$ Street removed with current year traffic counts

5.2.1 Signal control

5.2.1.1 Morning peak hour

HCM 2010 Signalized Intersection Summary

8/25:2013												
	,	\rightarrow	\cdots	7		4	4	9	p	\forall	1	\downarrow
Movement	EBL	EBT	EBR	M MBL	WUBT	MIMR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4		${ }^{7}$	4			4			$\stackrel{1}{*}$	
Volume (weh'h)	1	105	7	19	92	25	5	10	13	20	11	0
Number	7	4	14	3	8	18	5	2	12	1	6	16
Initial $Q(O b)$, veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pb T)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow wehhin	190.0	186.3	190.0	186.3	186.3	190.0	190.0	186.3	190.0	190.0	186.3	190.0
Lanes	0	1	0	1	1	0	0	1	0	0	1	0
Cap, vehh	105	206	14	37	362	98	198	382	403	645	318	0
Arrive On Green	0.12	0.12	0.12	0.02	0.26	0.26	0.52	0.52	0.52	0.52	0.52	0.00
Sat Flow, wehh	8	1711	120	1774	1414	382	151	742	781	923	617	0
Gp Volume(v), vehm	123	0	0	21	0	127	30	0	0	34	0	0
Gmp Sat Fow (s), wehh/n	1838	0	0	1774	0	1795	1675	0	0	1540	0	0
0 Serve (g_s), s	0.2	0.0	0.0	0.4	0.0	2.0	0.0	0.0	0.0	0.0	0.0	0.0
Cycle Q Clear(g_c), s	2.2	0.0	0.0	0.4	0.0	2.0	0.3	0.0	0.0	0.3	0.0	0.0
Prop In Lane	0.01		0.07	1.00		0.21	0.17		0.47	0.65		0.00
Lane Grp Cap(c), wehh	325	0	0	37	0	460	983	0	0	963	0	0
V/C Ratio()	0.38	0.00	0.00	0.56	0.00	0.28	0.03	0.00	0.00	0.04	0.00	0.00
Avail Cap(c_a), wehm	944	0	0	203	0	1233	983	0	0	963	0	0
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Fitter (l)	1.00	0.00	0.00	1.00	0.00	1.00	1.00	0.00	0.00	1.00	0.00	0.00
Unifom Delay (d), stieh	14.5	0.0	0.0	16.9	0.0	10.4	4.2	0.0	0.0	4.2	0.0	0.0
Incr Delay (d2), sheh	0.7	0.0	0.0	12.5	0.0	0.3	0.1	0.0	0.0	0.1	0.0	0.0
Initial Q Delay(d3), shieh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\%ile Back of 0 (50%), vehAn	0.9	0.0	0.0	0.3	0.0	0.7	0.1	0.0	0.0	0.1	0.0	0.0
Lane Grp Delay (d), sheh	15.2	0.0	0.0	29.4	0.0	10.7	4.2	0.0	0.0	4.3	0.0	0.0
Lane Grp LOS	B			C		B	A			A		
Approach Vol, wehh		123			148			30			34	
Approach Delay, sheh		15.2			13.4			4.2			4.3	
Approach LOS		B			B			A			A	
Timer												
Assigned Phs		4		3	8			2			6	
Phs Duration ($G+Y+R \mathrm{c})$, s		8.2		4.7	12.9			22.0			22.0	
Change Period ($Y+R \mathrm{C}$), s		4.0		4.0	4.0			4.0			4.0	
Max Green Setting (Gmax), s		16.0		4.0	24.0			18.0			18.0	
Max 0 Clear Time ($g_{-} \mathrm{c}+11$), s		4.2		2.4	4.0			2.3			2.3	
Green Ext Time (p_c), s		0.4		0.1	0.7			0.2			0.2	
Intersection Summary												
HCM 2010 Ctrl Delay			12.3									
HCM 2010 LOS			B									
Notes												

5.2.1.2 Afternoon peak hour

HCM 2010 Signalized Intersection Summary

4:											

5.2.2 Roundabout control

5.2.2.1 Morning peak hour

MOVEMENT SUMMARY
Site: Winner at Northern, proposed AM
Winner at Northern
Roundabout

Movement Performance - Vehicles											
Mov ID	Turn	Demand Flow vehin	$\begin{aligned} & \text { HV } \\ & \% \end{aligned}$	Deg. Satn w/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	Queue Distance ft	Prop.	Effective Stop Rate perveh	Average Speed mph
South: Northern Blvd.											
3	L	5	2.0	0.032	4.0	LOSA	0.1	2.7	0.25	0.79	23.7
8	T	11	2.0	0.032	4.0	LOSA	0.1	2.7	0.25	0.28	26.0
18	R	14	2.0	0.032	4.0	LOSA	0.1	2.7	0.25	0.42	25.5
Approac		30	2.0	0.032	4.0	LOSA	0.1	2.7	0.25	0.44	25.3
East: Winner Road											
1	L	21	2.0	0.136	4.5	LOSA	0.5	13.1	0.08	0.67	17.8
6	T	100	2.0	0.136	4.5	LOSA	0.5	13.1	0.08	0.02	18.6
16	R	27	2.0	0.136	4.5	LOSA	0.5	13.1	0.08	0.04	18.5
Approac		148	2.0	0.136	4.5	LOSA	0.5	13.1	0.08	0.12	18.4
North: Northern Blvd.											
7	L	22	2.0	0.036	4.0	LOSA	0.1	3.1	0.24	0.73	24.2
4	T	12	2.0	0.036	4.0	LOSA	0.1	3.1	0.24	0.34	26.6
14	R	1	2.0	0.036	4.0	LOSA	0.1	3.1	0.24	0.45	26.0
Approac		35	2.0	0.036	4.0	LOSA	0.1	3.1	0.24	0.59	25.0
West: Winner Road											
5	L	1	2.0	0.117	4.5	LOSA	0.4	11.0	0.16	0.94	25.7
2	T	114	2.0	0.117	4.5	LOSA	0.4	11.0	0.16	0.36	28.7
12	R	8	2.0	0.117	4.5	LOSA	0.4	11.0	0.16	0.51	28.0
Approac		123	2.0	0.117	4.5	LOSA	0.4	11.0	0.16	0.38	28.6
All Vehicles		336	2.0	0.136	4.4	LOSA	0.5	13.1	0.14	0.29	22.8

Level of Service (LOS) Method: Delay \& v/c (HCM 2010)
Roundabout LOS Method: Same as Sign Control.
Vehicle movement LOS values are based on average delay and v / c ratio (degree of saturation) per movement
LOS F will result if $\mathrm{v} / \mathrm{c}>1$ irrespective of movement delay value (does not apply for approaches and intersection).
Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010).
Roundabout Capacity Model: US HCM 2010.
HCM Delay Model used. Geometric Delay not included.

Page 22 of 27

5.2.2.2 Afternoon peak hour

LANE SUMMARY

Winner at Northern

Roundabout

Lane Use and Performance																
		$\begin{aligned} & \text { Demand } \\ & \text { veh/h } \end{aligned}$	$\begin{gathered} \text { Flows } \\ R \\ \text { eh/h } \end{gathered}$	Total vehh		Cap. veh/h	$\begin{aligned} & \text { Deg. } \\ & \text { Satn } \\ & \text { v/c } \end{aligned}$	$\begin{gathered} \text { Lane } \\ \text { Util. } \\ \% \end{gathered}$	$\begin{gathered} \text { Average } \\ \text { Delay } \\ \text { sec } \end{gathered}$	Level of Service	95\% Back Vehicles \qquad veh	of Queue Distance \qquad	$\begin{aligned} & \text { Lane } \\ & \text { Length } \\ & \text { it } \end{aligned}$	$\begin{gathered} \text { SL } \\ \text { Type } \end{gathered}$	$\begin{gathered} \text { Cap } \\ \text { Adj. } \\ \% \end{gathered}$	Prob. Block \qquad
South: Northern Blvd.																
Lane 1	11	22	30	63	2.0	790	0.080	100	5.4	LOSA	0.3	6.9	1600	-	0.0	0.0
Approach	11	22	30	63	2.0		0.080		5.4	LOSA	0.3	6.9				
East: Winner Road																
Lane 1	49	173	37	259	2.0	1068	0.242	100	5.7	LOSA	1.0	26.3	1600	-	0.0	0.0
Approach	49	173	37	259	2.0		0.242		5.7	LOSA	1.0	26.3				
North: Northern Blvd.																
Lane 1	41	22	3	66	2.0	875	0.076	100	4.8	LOSA	0.3	6.7	1600	-	0.0	0.0
Approach	41	22	3	66	2.0		0.076		4.8	LOSA	0.3	6.7				
West: Winner Road																
Lane 1	3	287	22	312	2.0	988	0.316	100	6.9	LOSA	1.4	36.3	1600	-	0.0	0.0
Approach	3	287	22	312	2.0		0.316		6.9	LOSA	1.4	36.3				
Intersection				700	2.0		0.316		6.1	LOSA	1.4	36.3				

Level of Service (LOS) Method: Delay \& v/c (HCM 2010).
Roundabout LOS Method: Same as Sign Control.
Lane LOS values are based on average delay and v/c ratio (degree of saturation) per lane
LOS F will result if v/c > irrespective of lane delay value (does not apply for approaches and intersection).
Intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 2010).
Roundabout Capacity Model: US HCM 2010.
HCM Delay Model used. Geometric Delay not included.

$5.318^{\text {th }}$ Street removed and 20 year traffic projections

5.3.1 Signal control

5.3.1.1 Morning peak hour

4.												52013
	4	\rightarrow	7	1	\nleftarrow	4		4	p		1	\downarrow
Movement	EBL	EBT	EBR	TMBL	WEST	M ${ }^{\prime}$ 'BR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4		${ }^{7}$	4			\Leftrightarrow			\leftrightarrow	
Volume (wehih)	1	105	7	19	92	25	5	10	13	20	11	0
Number	7	4	14	3	8	18	5	2	12	1	6	16
Initial Q (Ob), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow wehMAn	190.0	186.3	190.0	186.3	186.3	190.0	190.0	186.3	190.0	190.0	186.3	190.0
Lanes	0	1	0	1	1	0	0	1	0	0	1	0
Cap, vehh	99	278	18	52	421	115	195	351	378	605	297	0
Arive On Green	0.16	0.16	0.16	0.03	0.30	0.30	0.49	0.49	0.49	0.49	0.49	0.00
Sat Flow, wehh	8	1721	110	1774	1409	385	166	723	779	916	613	0
Gp Volume(v), vehm	184	0	0	31	0	191	45	0	0	51	0	0
Gpp Sat Fow(s), wehhAn	1839	0	0	1774	0	1795	1669	0	0	1529	0	0
Q Serwe $(9 . s)$, s	0.0	0.0	0.0	0.6	0.0	3.1	0.0	0.0	0.0	0.0	0.0	0.0
Cycle 0, Clear ${ }^{(g+c)}$, s	3.4	0.0	0.0	0.6	0.0	3.1	0.5	0.0	0.0	0.5	0.0	0.0
Prop in Lane	0.01		0.06	1.00		0.21	0.18		0.47	0.65		0.00
Lane Grp Cap(c), wehh	395	0	0	52	0	536	924	0	0	902	0	0
V/C Ratio(x)	0.47	0.00	0.00	0.59	0.00	0.36	0.05	0.00	0.00	0.06	0.00	0.00
Avail Cap(c_a), wehm	890	0	0	191	0	1162	924	0	0	902	0	0
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Fitter (l)	1.00	0.00	0.00	1.00	0.00	1.00	1.00	0.00	0.00	1.00	0.00	0.00
Uniform Delay (d), siveh	14.5	0.0	0.0	17.8	0.0	10.2	5.0	0.0	0.0	5.0	0.0	0.0
Incr Delay (d2), sheh	0.9	0.0	0.0	10.2	0.0	0.4	0.1	0.0	0.0	0.1	0.0	0.0
Initial Q Delay(d3), siveh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\%ile Back of 0. 50%, vehAn	1.5	0.0	0.0	0.4	0.0	1.2	0.2	0.0	0.0	0.2	0.0	0.0
Lane Grp Delay (d), sheh	15.3	0.0	0.0	28.0	0.0	10.6	5.1	0.0	0.0	5.2	0.0	0.0
Lane Grp LOS	B			C		B	A			A		
Approach Vol, wehM		184			222			45			51	
Approach Delay, sheh		15.3			13.0			5.1			5.2	
Approach LOS		B			B			A			A	
Timer												
Assigned Phs		4		3	8			2			6	
Phs Duration ($G+Y+R \mathrm{C})$, s		10.0		5.1	15.1			22.0			22.0	
Change Period ($\gamma+\mathrm{Re}^{\text {c }}$), s		4.0		4.0	4.0			4.0			4.0	
Max Green Setting (Gmax), s		16.0		4.0	24.0			18.0			18.0	
Max 0 Clear Time (g_c+11), s		5.4		2.6	5.1			2.5			2.5	
Green Ext Time (p_c), s		0.7		0.1	1.1			0.4			0.4	
Intersection Summary												
HCM 2010 Ctrl Delay			12.4									
HCM 2010 LOS			B									
Notes												

5.3.1.2 Afternoon peak hour

HCM 2010 Signalized Intersection Summary

	4	\rightarrow	\checkmark			4		4	p	$\$$	1	\downarrow
Movement	EBL	EBT	ERR	IMBL	MET	INM BR	NBL	NBT	NBR	9BL	SBT	98R
Lane Configurations		\dagger		7	4			\&			4	
Volume (weh'h)	3	264	20	45	159	34	10	20	28	38	20	3
Number	7	4	14	3	8	18	5	2	12	1	6	16
Initial $0(\mathrm{Ob})$, veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pb T)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow wehshin	190.0	186.3	190.0	186.3	186.3	190.0	190.0	186.3	190.0	190.0	186.3	190.0
Lanes	0	1	0	1	1	0	0	1	0	0	1	0
Cap, vehh	81	540	41	94	681	145	146	263	298	441	214	28
Arrive On Green	0.32	0.32	0.32	0.05	0.46	0.46	0.37	0.37	0.37	0.37	0.37	0.37
Sat Flow, wehh	5	1701	129	1774	1490	316	148	712	807	852	580	75
Grp Volume (v), vehh	468	0	0	73	0	314	95	0	0	100	0	0
Gpp Sat Fow(s), wehhAn	1836	0	0	1774	0	1807	1666	0	0	1508	0	0
Q Serve(g_s), s	0.2	0.0	0.0	1.9	0.0	5.3	0.0	0.0	0.0	0.0	0.0	0.0
Cycle 0, Clear ${ }^{(g+c)}$), s	10.7	0.0	0.0	1.9	0.0	5.3	1.7	0.0	0.0	1.7	0.0	0.0
Prop In Lane	0.01		0.07	1.00		0.18	0.17		0.48	0.62		0.05
Lane Grp Cap(c), wehh	662	0	0	94	0	826	706	0	0	683	0	0
V/C Ration)	0.71	0.00	0.00	0.78	0.00	0.38	0.13	0.00	0.00	0.15	0.00	0.00
Avail Cap(c_a), wehh	756	0	0	154	0	981	706	0	0	683	0	0
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter (l)	1.00	0.00	0.00	1.00	0.00	1.00	1.00	0.00	0.00	1.00	0.00	0.00
Unifom Delay (d), sheeh	14.4	0.0	0.0	21.6	0.0	8.2	9.7	0.0	0.0	9.7	0.0	0.0
Incr Delay (d2), sheh	2.6	0.0	0.0	13.1	0.0	0.3	0.4	0.0	0.0	0.5	0.0	0.0
Initial 0 Delay(d3), siveh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
$\%$ \%ile Back of $0 .(50 \%)$, vehin	4.8	0.0	0.0	1.1	0.0	1.9	0.7	0.0	0.0	0.8	0.0	0.0
Lane Grp Delay (d), sheh	17.0	0.0	0.0	34.6	0.0	8.5	10.1	0.0	0.0	10.1	0.0	0.0
Lane Grp LOS	B			C		A	B			B		
Approach Vol, wehh		468			387			95			100	
Approach Delay, sheh		17.0			13.4			10.1			10.1	
Approach LOS		B			B			B			B	
Timer												
Assigned Phs		4		3	8			2			6	
Phs Duration ($G+Y+R C)$, s		18.6		6.4	25.1			21.0			21.0	
Change Period ($Y+R \mathrm{c}$), s		4.0		4.0	4.0			4.0			4.0	
Max Green Setting (Gmax), s		17.0		4.0	25.0			17.0			17.0	
Max 0 Clear Time ($g_{-} \mathrm{c}+11$), s		12.7		3.9	7.3			3.7			3.7	
Green Ext Time (p_c), s		1.9		0.0	4.8			0.8			0.8	
Intersection Summary												
HCM 2010 Ctrl Delay			14.4									
HCM 2010 LOS			B									
Notes												

Baseline Synchro 8 Report

5.3.2 Roundabout control

5.3.2.1 Morning peak hour

MOVEMENT SUMMARY

Winner at Northern

Roundabout
Design Life Analysis (Practical Capacity): Results for 20 years

Movement Performance - Vehicles											
Mov ID	Tum	Demand Flow veh/h	$\begin{aligned} & \text { HV } \\ & \% \end{aligned}$	Deg Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	f Queue Distance \qquad	Prop Queued	Effective Stop Rate perveh	Average Speed mph
South: Northern Blvd.											
3	L	8	2.0	0.047	4.4	LOSA	0.2	4.0	0.30	0.79	23.5
8	T	15	2.0	0.047	4.4	LOSA	0.2	4.0	0.30	0.33	25.8
18	R	20	2.0	0.047	4.4	LOSA	0.2	4.0	0.30	0.45	25.3
Approa		43	2.0	0.047	4.4	LOSA	0.2	4.0	0.30	0.47	25.1
East: Winner Road											
1	L	29	2.0	0.192	5.1	LOSA	0.8	19.6	0.11	0.66	17.6
6	T	140	2.0	0.192	5.1	LOSA	0.8	19.6	0.11	0.03	18.4
16	R	38	2.0	0.192	5.1	LOSA	0.8	19.6	0.11	0.05	18.3
Approa		207	2.0	0.192	5.1	LOSA	0.8	19.6	0.11	0.12	18.3
North: Northern Blvd.											
7	L	30	2.0	0.053	4.4	LOSA	0.2	4.6	0.29	0.74	24.1
4	T	17	2.0	0.053	4.4	LOSA	0.2	4.6	0.29	0.38	26.4
14	R	2	2.0	0.053	4.4	LOSA	0.2	4.6	0.29	0.48	25.8
Approa		49	2.0	0.053	4.4	LOSA	0.2	4.6	0.29	0.61	24.8
West: Winner Road											
5	L	2	2.0	0.168	5.1	LOSA	0.7	16.5	0.20	0.92	25.5
2	T	160	2.0	0.168	5.1	LOSA	0.7	16.5	0.20	0.38	28.4
12	R	11	2.0	0.168	5.1	LOSA	0.7	16.5	0.20	0.52	27.7
Approa		172	2.0	0.168	5.1	LOSA	0.7	16.5	0.20	0.40	28.3
All Vehicles		470	2.0	0.192	4.9	LOSA	0.8	19.6	0.18	0.30	22.6

Level of Service (LOS) Method: Delay \& v/c (HCM 2010).
Roundabout LOS Method: Same as Sign Control.
Vehicle movement LOS values are based on average delay and v / c ratio (degree of saturation) per movement
LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).
Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010).
Roundabout Capacity Model: US HCM 2010.
HCM Delay Model used. Geometric Delay not included

Processed: Sunday, August 25, 2013 3:57:25 PM SIDRA INTERSECTION 5.1.13.2093 Project: C:Users!R3CIDesktoplWinner at Northern future 8000824, R 3C DESIGN GROUP, SINGLE	Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com AM.sip	SIDRA INTERSECTION

5.3.2.2 Afternoon peak hour

LANE SUMMARY
Winner at Northern
Roundabout
Design Life Analysis (Practical Capacity): Results for 20 years

Lane Use and Performance																
	L vehth	Demand vehin	d Flows R vehh	Total vehh	$\begin{array}{r} \text { HV } \\ \% \\ \hline \end{array}$	Cap veh/h	Deg Satn v/c	$\begin{gathered} \text { Lane } \\ \text { Util. } \\ \% \end{gathered}$	Average Delay sec	Level of Service	95\% Back Vehicles veh	of Queue Distance ft	Lane Length ft	$\begin{gathered} \text { SL } \\ \text { Type } \end{gathered}$	Cap. Adj. \%	Prob. Block. \%
South: Northern Blvd.																
Lane 1	15	30	43	88	2.0	690	0.128	100	6.6	LOSA	0.4	11.2	1600	-	0.0	0.0
Approach	15	30	43	88	2.0		0.128		6.6	LOSA	0.4	11.2				
East: Winner Road																
Lane 1	68	242	52	362	2.0	1053	0.344	100	6.9	LOSA	1.7	42.4	1600	-	0.0	0.0
Approach	68	242	52	362	2.0		0.344		6.9	LOSA	1.7	42.4				
North: Northern Blva.																
Lane 1	58	30	5	93	2.0	795	0.117	100	5.7	LOSA	0.4	10.4	1600	-	0.0	0.0
Approach	58	30	5	93	2.0		0.117		5.7	LOSA	0.4	10.4				
West: Winner Road																
Lane 1	5	402	30	437	2.0	944	0.462	100	9.4	LOSA	2.5	62.6	1600	-	0.0	0.0
Approach	5	402	30	437	2.0		0.462		9.4	LOSA	2.5	62.6				
Intersection				980	2.0		0.462		7.9	LOSA	2.5	62.6				

Level of Service (LOS) Method: Delay \& v/c (HCM 2010).
Roundabout LOS Method: Same as Sign Control
Lane LOS values are based on average delay and v/c ratio (degree of saturation) per lane.
LOS F will result if $\mathrm{v} / \mathrm{C}>$ irrespective of lane delay value (does not apply for approaches and intersection).
Intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 2010).
Roundabout Capacity Model: US HCM 2010.
HCM Delay Model used. Geometric Delay not included.

This page intentionally left blank.

VIREO

